LME series – digital low differential pressure sensors

The LME differential low pressure sensors are based on thermal flow measurement of gas through a micro-flow channel integrated within the sensor chip. The innovative LME technology features superior sensitivity especially for ultra low pressures. The extremely low gas flow through the sensor ensures high immunity to dust contamination, humidity and long tubing compared to other flow-based pressure sensors.

Features

- Ultra-low pressure ranges from 25 to 2500 Pa (0.1 to 10 inH₂O)
- Pressure sensor based on thermal microflow measurement
- High flow impedance
 - very low flow-through leakage
 - high immunity to dust and humidity
 - no loss in sensitivity using long tubing
- Outstanding long-term stability and precision with patented real-time offset compensation and linearization techniques
- Offset long term stability better than 0.1 Pa/year
- Total accuracy better than 0.5% FS typical
- On-chip temperature sensor
- Linearized digital SPI and analog outputs
- Small footprint, low profile, only 9 mm in height, and robust package
- Pressure ports for direct manifold assemblies
- Highly versatile to fit to application-specific mounting adaptors and manifolds
- Minimized internal volume and manifold mount option allow for fast gas purge time
- No position sensitivity

Certificates

- Quality Management System according to EN ISO 13485 and EN ISO 9001
- RoHS and REACH compliant

Media compatibility

Air and other non-corrosive gases

Applications

Medical

- Ventilators
- Spirometers
- CPAP
- Sleep diagnostic equipment
- Nebulizers
- Oxygen conservers/concentrators
- Insufflators/endoscopy

Industrial

- HVAC
 - VAV
 - Filter monitoring
 - Burner control
- Fuel cells
- Gas leak detection
- Gas metering
- Fume hood
- Instrumentation
- Security systems

LME series – digital low differential pressure sensors

Maximum ratings

Parameter	Min.	Max.	Unit
Supply voltage V _s	4.75	5.25	
Output current		1	mA
Soldering recommendations			
Reflow soldering, peak temperature		245	°C
Wave soldering, pot temperature		260	° °
Hand soldering, tip temperature		370	°C
Temperature ranges			
Compensated	0	+70	°C
Operating	-20	+80	° °
Storage	-40	+80	°C
Humidity limits (non-condensing)		97	%RH
Vibration ⁽¹⁾		20	g
Mechanical shock ⁽²⁾		500	g

Pressure sensor characteristics

Part no.	Operating pressure	Proof pressure (3)	Burst pressure ⁽³⁾
LMES025U	025 Pa / 00.25 mbar (0.1 inH₂O)		
LMES050U	050 Pa / 00.5 mbar (0.2 inH ₂ O)		
LMES100U	0100 Pa / 01 mbar (0.4 inH ₂ O)		
LMES250U	0250 Pa / 02.5 mbar (1 inH ₂ O)		
LMES500U	0500 Pa / 05 mbar (2 inH ₂ O)		
LMEM012U	01250 Pa / 012.5 mbar (5 inH ₂ O)		
LMEM025U	02500 Pa / 025 mbar (10 inH ₂ O)	2 bar	5 bar
LMES025B	0±25 Pa / 0±0.25 mbar (0.1 inH ₂ O)	(30 psi)	(75 psi)
LMES050B	0±50 Pa / 0±0.5 mbar (0.2 inH ₂ O)		
LMES100B	0±100 Pa / 0±1 mbar (0.4 inH₂O)		
LMES250B	0±250 Pa / 0±2.5 mbar (1 inH ₂ O)		
LMES500B	0±500 Pa / 0±5 mbar (2 inH ₂ O)		
LMEM012B	0±1250 Pa / 0±12.5 mbar (5 inH ₂ O)		
LMEM025B	0±2500 Pa / 0±25 mbar (10 inH ₂ O)		

Gas correction factors ⁽⁴⁾

Correction factor	
1.0	
1.07	
0.97	
0.98	
0.56	

Specification notes

(1) Sweep 20 to 2000 Hz, 8 min, 4 cycles per axis, MIL-STD-883, Method 2007.

(2) 5 shocks, 3 axes, MIL-STD-883E, Method 2002.4.

(3) The max. common mode pressure is 5 bar.

```
\Delta P_{eff} = \Delta P_{Sensor} x gas correction factor = 500 Pa x 0.56 = 280 Pa
```

 ΔP_{off} = True differential pressure

 $\Delta P_{\text{Sensor}}^{\circ}$ = Differential pressure as indicated by output signal

⁽⁴⁾ For example with a LMES500... sensor measuring $\rm CO_2$ gas, at full-scale output the actual pressure will be:

LME series – digital low differential pressure sensors

Performance characteristics ⁽⁵⁾

(V_s=5.0 V_{_{DC'}} T_{_{A}}=20 ~^{\circ}C, P_{_{Abs}}=1 bara, calibrated in air, output signal is non-ratiometric to V_s)

25 Pa and 50 Pa devices						
Parameter			Min.	Тур.	Max.	Unit
Noise level (RMS)				±0.01		Pa
Offset warm-up shift					less than noise	
Offset long term stability ⁽⁶⁾				±0.05	±0.1	Pa/year
Offset repeatability				±0.01		Pa
Span repeatability ^(9, 10)				±0.25		% of reading
Current consumption (no load	d) ⁽⁷⁾			7	8	mA
Response time (t ₆₃)				5		ms
Power-on time					25	ms
Digital output						
Parameter			Min.	Тур.	Max.	Unit
Scale factor (digital output) (^{B)} 025/0	±25 Pa		1200		counts/Pa
	050/0	±50 Pa		600		counts/Pa
Zero pressure offset accuracy	(9)			±0.1	±0.2	%FSS
Span accuracy ^(9, 10)				±0.4	±0.75	% of reading
Thermal effects	Offset	555 °C			±0.2	%FSS
		070 °C			±0.4	%FSS
	Span	555 °C		±1	±1.75	% of reading
		070 °C		±2	±2.75	% of reading
Analog output (unidirect	ional devices)					
Parameter			Min.	Тур.	Max.	Unit
Zero pressure offset (9)			0.49	0.50	0.51	V
Full scale output				4.50		V
Span accuracy ^(9, 10)				±0.4	±0.75	% of reading
Thermal effects	Offset	555 °C			±15	mV
		070 °C			±30	mV
	Span	555 °C		±1.25	±2	% of reading
		070 °C		±2	±2.75	% of reading
Analog output (bidirectio	onal devices)					
Parameter			Min.	Тур.	Max.	Unit
Zero pressure offset ⁽⁹⁾			2.49	2.50	2.51	V
Output	at max. specified	d pressure		4.50		V
at min. specified pressure				0.50		V
Span accuracy ^(9, 10)				±0.4	±0.75	% of reading
Thermal effects	Offset	555 °C			±15	mV
		070 °C			±30	mV

±1.25

±2

Specification notes (cont.)

(5) The sensor is calibrated with a common mode pressure of 1 bar absolute. Due to the mass flow based measuring principle, variations in absolute common mode pressure need to be compensated according to the following formula:

5...55 °C

0...70 °C

$$\Delta P_{eff} = \Delta P_{Sensor} \times 1 \text{ bara}/P_{abs}$$

- ΔP_{eff} = True differe $\Delta P_{s_{ensor}}^{com}$ = Differential pressure as indicated by output voltage
- P_{abs} = Current absolute common mode pressure

Span

(6) Figure based on accelerated lifetime test of 10000 hours at 85 °C biased burn-in.

% of reading

% of reading

(7) Please contact First Sensor for low power options. The digital output signal is a signed, two complement integer. Negative (8)

±2

±2.75

- pressures will result in a negative output
- (9) Zero pressure offset accuracy and span accuracy are uncorrelated uncertainties. They can be added according to the principles of error propagation.
- (10) Span accuracy below 10% of full scale is limited by the intrinsic noise of the sensor.

LME series – digital low differential pressure sensors

Performance characteristics (cont.) ⁽⁵⁾

 $(V_s=5.0 V_{pc'} T_A=20 \text{ °C}, P_{Abs}=1 \text{ bara, calibrated in air, output signal is non-ratiometric to } V_s)$

100 Pa, 250 Pa and 500 Pa devices

Parameter			Min.	Тур.	Max.	Unit
Noise level (RMS)			±0.01		%FSS	
Offset warm-up shift					less than noise	
Offset long term stability ⁽⁶⁾				±0.05	±0.1	%FSS/year
Offset repeatability ⁽¹¹⁾				±0.02		Pa
Span repeatability ^(9, 10)				±0.25		% of reading
Current consumption (no load	(⁷⁾			7	8	mA
Response time (t ₆₃)				5		ms
Power-on time					25	ms
Digital output						
Parameter			Min.	Тур.	Max.	Unit
Scale factor (digital output) (8	0100/0.	±100 Pa		300		counts/Pa
	0250/0	±250 Pa		120		counts/Pa
	0500/0	±500 Pa		60		counts/Pa
Zero pressure offset accuracy	(9)			±0.05	±0.1	%FSS
Span accuracy ^(9, 10)				±0.4	±0.75	% of reading
Thermal effects	Offset	555 °C			±0.1	%FSS
		070 °C			±0.2	%FSS
	Span	555 °C		±1	±1.75	% of reading
		070 °C		±2	±2.75	% of reading
Analog output (unidirect	ional devices)					
Parameter			Min.	Тур.	Max.	Unit
Zero pressure offset (9)			0.49	0.50	0.51	V
Full scale output				4.50		V
Span accuracy ^(9, 10)				±0.4	±0.75	% of reading
Thermal effects	Offset	555 °C			±10	mV
		070 °C			±12	mV
	Span	555 °C		±1	±1.75	% of reading
		070 °C		±2	±2.75	% of reading
Analog output (bidirectio	onal devices)					
Parameter			Min.	Тур.	Max.	Unit
Zero pressure offset (9)			2.49	2.50	2.51	V
Output	at max. specifie	d pressure		4.50		V
	at min. specified	d pressure		0.50		V
Span accuracy ^(9, 10)				±0.4	±0.75	% of reading
Thermal effects	Offset	555 °C			±10	mV
		070 °C			±12	mV
	Span	555 °C		±1	±1.75	% of reading

Specification notes (cont.)

(5) The sensor is calibrated with a common mode pressure of 1 bar absolute. Due to the mass flow based measuring principle, variations in absolute common mode pressure need to be compensated according to the following formula:

0...70 °C

$$\Delta P_{eff} = \Delta P_{Sensor} \times 1 \text{ bara}/P_{abs}$$

 ΔP_{eff} = True differ $\Delta P_{s_{ensor}}^{c_{ensor}}$ = Differential pressure as indicated by output voltage

P_{abs}= Current absolute common mode pressure

- (6) Figure based on accelerated lifetime test of 10000 hours at 85 °C biased burn-in. (7) Please contact First Sensor for low power options.
- The digital output signal is a signed, two complement integer. Negative (8) pressures will result in a negative output

±2.75

(9) Zero pressure offset accuracy and span accuracy are uncorrelated uncertainties. They can be added according to the principles of error propagation.

(10) Span accuracy below 10% of full scale is limited by the intrinsic noise of the sensor.

(11) Typical value for 250 Pa sensors.

±2

% of reading

LME series – digital low differential pressure sensors

Performance characteristics (cont.) (5, 12)

(V_s=5.0 V_{_{DC'}} T_{_{A}}=20 ~^{\circ}C, P_{_{Abs}}=1 bara, calibrated in air, output signal is non-ratiometric to V_)

1250 Pa and 2500 Pa device	s					
Parameter			Min.	Тур.	Max.	Unit
Noise level (RMS)				±0.5		Pa
Offset warm-up shift					less than noise	
Offset long term stability ⁽⁶⁾				±1.25	±2.5	Pa/year
Offset repeatability				±0.5		Pa
Span repeatability ^(9, 10)				±0.25		% of reading
Current consumption (no load) (7)				7	8	mA
Response time (t ₆₃)				5		ms
Power-on time					25	ms
Digital output						
Parameter			Min.	Тур.	Max.	Unit
Scale factor (digital output) ⁽⁸⁾	01250/0	0±1250 Pa		24		counts/Pa
	02500/	0±2500 P	а	12		counts/Pa
Zero pressure offset accuracy ⁽⁹⁾				±0.1	±0.2	%FSS
Span accuracy ^(9, 10)				±0.75	±1.5	% of reading
Thermal effects	Offset	555 °C			±0.1	%FSS
		070 °C			±0.2	%FSS
	Span	555 °C		±1	±1.75	% of reading
		070 °C		±2	±2.75	% of reading
Analog output (unidirection	al devices)					
Parameter			Min.	Тур.	Max.	Unit
Zero pressure offset ⁽⁹⁾			0.49	0.50	0.51	V
Full scale output				4.50		V
Span accuracy ^(9, 10)				±0.75	±1.5	% of reading
Thermal effects	Offset	555 °C			±10	mV
		070 °C			±12	mV
	Span	555 °C		±1.25	±2	% of reading
		070 °C		±2	±2.75	% of reading
Analog output (bidirectiona	l devices)					
Parameter			Min.	Тур.	Max.	Unit
Zero pressure offset ⁽⁹⁾			2.49	2.50	2.51	V
Output at	max. specifie	d pressure		4.50		V

- alpat	at man op ot	inica processo			
	at min. spec	ified pressure	0.50		v
Span accuracy ^(9, 10)			±0.75	±1.5	% of reading
Thermal effects	Offset	555 °C		±10	mV
		070 °C		±12	mV
	Span	555 °C	±1.25	±2	% of reading
		070 °C	±2	±2.75	% of reading

Specification notes (cont.)

(5) The sensor is calibrated with a common mode pressure of 1 bar absolute. Due to the mass flow based measuring principle, variations in absolute common mode pressure need to be compensated according to the following formula:

$$\Delta P_{eff} = \Delta P_{Sensor} \times 1 \text{ bara/P}_{abs}$$

 ΔP_{eff} = True differen ΔP_{sensor}^{em} = Differential pressure as indicated by output voltage

P_{bb} = Current absolute common mode pressure

(6) Figure based on accelerated lifetime test of 10000 hours at 85 °C biased burn-in.

(7) Please contact First Sensor for low power options.

- (8) The digital output signal is a signed, two complement integer. Negative pressures will result in a negative output
- (9) Zero pressure offset accuracy and span accuracy are uncorrelated uncertainties. They can be added according to the principles of error propagation.
- (10) Span accuracy below 10% of full scale is limited by the intrinsic noise of the sensor.
- (12) For pressure ranges 1250 Pa and 2500 Pa, more accurate absolute pressure correction procedures than in (5) might be needed. See Application Note "Absolute pressure correction of LME/LMI pressure sensors".

LME series – digital low differential pressure sensors

Performance characteristics (cont.)

lemperature sensor Parameter	Min	Тур	Мах	Unit
Scale factor (digital output)		95		counts/°C
Non-linearity		±0.5		%FS
Hysteresis		±0.1		% FS

Total accuracy (13)

Pressure [Pa]

Fig. 1: Typical total accuracy plot of 16 LME 50 Pa sensors @ 25 °C (typical total accuracy better than 0.5 %FS)

Offset long term stability

Fig. 2: Offset long term stability for LME 250 Pa sensors after 10,000 hours @ 85°C powered, equivalent to over 43.5 years @ 25 °C (better than ±2 mV / ±0.125 Pa)

Specification notes (cont.)

(13) Total accuracy is the combined error from offset and span calibration, non-linearity, repeatability and pressure hysteresis

LME series – digital low differential pressure sensors

SPI – Serial Peripheral Interface

Introduction

The LME serial interface is a high-speed synchronous data input and output communication port. The serial interface operates using a standard 4-wire SPI bus. The LME device runs in SPI mode 0, which requires the clock line SCLK to idle low (CPOL = 0), and for data to be sampled on the leading clock edge (CPHA = 0). Figure 5 illustrates this mode of operation.

Care should be taken to ensure that the sensor is properly connected to the master microcontroller. Refer to the manufacturer's datasheet for more information regarding physical connections.

Application circuit

The use of pull-up resistors is generally unnecessary for SPI as most master devices are configured for push-pull mode. There are, however, some cases where it may be helpful to use 33 Ω series resistors at both ends of the SPI lines, as shown in Figure 3.

Signal quality may be further improved by the addition of a buffer as shown in Figure 4. These cases include multiple slave devices on the same bus segment, using a master device with limited driving capability and long SPI bus lines.

If these series resistors are used, they must be physically placed as close as possible to the pins of the master and slave devices.

Signal control

The serial interface is enabled by asserting /CS low. The serial input clock, SCLK, is gated internally to begin accepting the input data at MOSI, or sending the output data on MISO. When /CS rises, the data clocked into MOSI is loaded into an internal register.

Fig. 3: Application circuit with resistors at both ends of the SPI lines

Fig. 4: Application circuit with additional buffer

LME series – digital low differential pressure sensors

SPI – Serial Peripheral Interface (cont.)

Data read - pressure

When powered on, the sensor begins to continuously measure pressure. To initiate data transfer from the sensor, the following three unique bytes must be written sequentially, MSB first, to the MOSI pin (see Figure 5):

Step	Hexadecimal	Binary	Description
1	0x2D	B00101101	Poll current pressure measurement
2	0x14	B00010100	Send result to data register
3	0x98	B10011000	Read data register

The entire 16 bit content of the LME register is then read out on the MISO pin, MSB first, by applying 16 successive clock pulses to SCLK with /CS asserted low. Note that the value of the LSB is held at zero for internal signal processing purposes. This is below the noise threshold of the sensor and thus its fixed value does not affect sensor performance and accuracy.

From the digital sensor output the actual pressure value can be calculated as follows:

For example, for a ± 250 Pa sensor (LMES250B...) with a scale factor of 120 a digital output of 30 000 counts (7530'h) calculates to a positive pressure of 250 Pa. Similarly, a digital output of -30 000 counts (8AD0'h) calculates to a negative pressure of -250 Pa.

Fig. 5: SPI data transfer

LME series – digital low differential pressure sensors

SPI – Serial Peripheral Interface (cont.)

Data read - temperature

The on-chip temperature sensor changes 95 counts/°C over the operating range. The temperature data format is 15-bit plus sign in two's complement format. To read temperature, use the following sequence:

Step	Hexadecimal	Binary	Description
1	0x2A	B00101010	Poll current temperature measurement
2	0x14	B00010100	Send result to data register
3	0x98	B10011000	Read data register

From the digital sensor output, the actual temperature can be calculated as follows:

```
Temperature [°C] = \frac{\text{TS} - \text{TS}_{0} \text{ [counts]}}{\text{Scale factor}_{\text{TS}} \left[\frac{\text{counts}}{\text{°C}}\right]} + \text{T}_{0} [°C]
```

where

TS is the actual sensor readout;

 TS_0 is the sensor readout at known temperature $T_0^{(14)}$; Scale factor_{TS} = 95 counts/°C

Specification notes (cont.)

(14) To be defined by user. The results show deviation (in °C) from the offset calibrated temperature.

LME series – digital low differential pressure sensors

SPI – Serial Peripheral Interface (cont.)

Interface specification

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
External clock frequency	f _{eclk}	V _{CKSEL} =0 Min.		0.2		
		Max.		5		MHZ
External master clock input low time	f ECLKIN LO	t _{ECLK} =1/f _{ECLK}	40		60	
External master clock input high time	f _{ECLKIN HI}	$t_{ECLK} = 1/f_{ECLK}$	40		60	76 LECLK
SCLK setup to falling edge /CS	t _{sc}		30			
/CS falling edge to SCLK rising edge setup time	t _{css}		30			115
/CS idle time	t _{csi}	f _{CLK} =4 MHz	1.5			μs
SCLK falling edge to data valid delay	t _{DO}	C _{LOAD} =15 pF			80	
Data valid to SCLK rising edge setup time	t _{DS}		30			
Data valid to SCLK rising edge hold time	t _{DH}		30			
SCLK high pulse width	t _{сн}		100			
SCLK low pulse width	t _{cL}		100			ns
/CS rising edge to SCLK rising edge hold time	t _{csH}		30			
/CS falling edge to output enable	t _{DV}	C _{LOAD} =15 pF			25	
/CS rising edge to output disable	t _{TR}	C _{LOAD} =15 pF			25	
Maximum output load capacitance	CLOAD	$R_{LOAD} = \infty$, phase margin >55°		200		pF
Input voltage, logic HIGH	VIH		0.8×V _s		V _s +0.3	
Input voltage, logic LOW	VIL				0.2×V _s	
Output voltage, logic HIGH	V _{он}	R _{LOAD} =∞	V _s -0.1			\/
		$R_{LOAD}=2 k\Omega$	V _s -0.15			— v
Output voltage, logic LOW	VoL	R _{LOAD} =∞			0.5	
		$R_{LOAD}=2 k\Omega$			0.2	

Fig. 6: SPI timing diagram

LME series – digital low differential pressure sensors

Dimensional drawing

Suggested PCB land pattern

dimensions in mm, all tolerances ±0.1 mm unless otherwise noted

2.20

Sensor PCB footprint

Electrical connection

There are two use cases that will change the manner in which the LME series device is connected in-circuit:

Pin	Function	Case 1: Digital signal output	Case 2: Analog signal output
1	- <mark>V</mark> s	+5V	+5V
2	GND	GND	GND
3	Vout	NC	High impedance analog input (e.g. op-amp, ADC)
4	Reserved	NC	NC
5	SCLK	Master device SCLK	GND
6	MOSI	Master device MOSI	GND
7	MISO	Master device MISO	GND
8	/CS	Master device (/CS)	V _s

LME series – digital low differential pressure sensors

Manifold diagram for two side-by-side mounted sensors

dimensions in mm, all tolerances ±0.1 mm unless otherwise noted

Manifold diagram for multiple side-by-side mounted sensors

LME series – digital low differential pressure sensors

Custom adaptor

The LME series pressure sensors can optionally be equipped with a custom adaptor for your application-specific mounting requirements. It is designed for applications where wider port spacing and diameter are needed. Please contact First Sensor for more information.

3D views of a custom adaptor for the LME pressure sensor

Dimensional drawing ZA009102 plug-in adaptor

Recommended O-rings: Part number: 90025K119 www.mcmaster.com

dimensions in mm

LME series – digital low differential pressure sensors

Gas mixture change (purge time)

The LME series pressure sensors feature minimized internal volume, which allows for fast response to gas mixture change and high pneumatic impedance at the same time. Purge time (T_{p}) can be estimated by the following equation:

$$T_{p} = -\frac{V_{INT}}{F_{Norm}} = -\frac{V_{INT}}{P_{Norm}/Z_{p}}$$

 T_{p} = Purge time [s]

V_{INT} = Internal volume of the LME sensor [ml]

F_{Nom} = Nominal flow [ml/s]

P_{Nom} = Nominal pressure [Pa] Z_p = Pneumatic impedance [kPa/(ml/s)]

The typical internal volume of the LME sensor (V_{INT}) is 0.04 ml. With a pneumatic impedance (Z_P) of 15 kPa/(ml/s) and a nominal pressure (P_{Nom}) of 250 Pa, the estimated purge time (T_{p}) is 2.4 seconds.

Ordering information

Series	Pressure range		Calibration		Housing	Output	Grade
LME	S025	25 Pa (0.1 in H_2 O)	в	Bidirectional	B [SMD, 2 ports, axial, same side]	6 [Non-ratiometric, 5 V supply]	S [High]
	S050	50 Pa (0.2 inH ₂ O)	U	Unidirectional			
	S100	100 Pa (0.4 inH ₂ O)					
	S250	250 Pa (1 inH ₂ O)					
	S500	500 Pa (2 inH ₂ O)					
	M012	1250 Pa (5 inH ₂ O)	•				
	M025	2500 Pa (10 inH ₂ O)					

Order code example: LMES025UB6S

Accessories (order separately)

ZA009102 Plug-in adaptor with wider port spacing and diameter